Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Data Association between Perception and V2V Communication Sensors

2023-04-11
2023-01-0856
The connectivity between vehicles, infrastructure, and other traffic participants brings a new dimension to automotive safety applications. Soon all the newly produced cars will have Vehicle to Everything (V2X) communication modems alongside the existing Advanced Driver Assistant Systems (ADAS). It is essential to identify the different sensor measurements for the same targets (Data Association) to use connectivity reliably as a safety feature alongside the standard ADAS functionality. Considering the camera is the most common sensor available for ADAS systems, in this paper, we present an experimental implementation of a Mahalanobis distance-based data association algorithm between the camera and the Vehicle to Vehicle (V2V) communication sensors. The implemented algorithm has low computational complexity and the capability of running in real-time. One can use the presented algorithm for sensor fusion algorithms or higher-level decision-making applications in ADAS modules.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

Hierarchical Neural Network-Based Prediction Model of Pedestrian Crossing Behavior at Unsignalized Crosswalks

2023-04-11
2023-01-0865
To enable smooth and low-risk autonomous driving in the presence of other road users, such as cyclists and pedestrians, appropriate predictive safe speed control strategies relying on accurate and robust prediction models should be employed. However, difficulties related to driving scene understanding and a wide variety of features influencing decisions of other road users significantly complexifies prediction tasks and related controls. This paper proposes a hierarchical neural network (NN)-based prediction model of pedestrian crossing behavior, which is aimed to be applied within an autonomous vehicle (AV) safe speed control strategy. Additionally, different single-level prediction models are presented and analyzed as well, to serve as baseline approaches.
Technical Paper

Virtual Methods for Water Management in Automotive Structures

2023-04-11
2023-01-0933
The requirements of the automotive industry move along due to product competitiveness and this contributes to increase complexity in the requirements for evaluation. Simulation tools play a key role thanks to their versatility and multiple physical phenomena that can be represented. The axis of analysis for this paper is the problem of the interaction of airflow and water flow in the cowl/plenum/leaf screen components. Airflow is represented by HVAC system operating and water flow by the vehicle in torrential rain. Initially, one simulation is evaluated at a time, in one side, the airflow entering the HVAC system in which the amount of air entering is monitored and pressure drop, on the other, the water simulation on the vehicle, both using a Lagrangian CFD model (using with tools such as STAR CCM+® or Ansys Fluent®) Due to this, a CFD methodology was developed to evaluate the interaction of air and water flow.
Technical Paper

Exterior-Interior Interface Connection Design for Optimal Performance in Automotive Systems

2023-04-11
2023-01-0935
The vehicle instrument panel (IP) system has several interactions with the surrounding components such as the Dash, Cowl, Cross Car Beam (CCB), Floor, Body Side etc. With such interactions comes different loadings, usage scenarios, interfaces and design challenges to overcome. For the specific case of the IP to Cowl & Dash interfaces, the position and performance in different load cases, such as, but not limited to, vibration and heat expansion loading as well as the assembly process. A design solution is required to enhance the performance in all these scenarios while maintaining the cost, weight & complexity as low as possible. This paper describes the development process of an optimized solution with a multi-disciplinary approach using advanced computer aided engineering (CAE) optimization tools, which involved performance in multiple virtual evaluations and mass.
Technical Paper

ES2re, WS50M, and Human Body Models in Far-Side Pole Impacts

2023-04-11
2023-01-0558
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers.
Journal Article

Development of a Detailed 3D Finite Element Model for a Lithium-Ion Battery Subject to Abuse Loading

2023-04-11
2023-01-0007
Lithium-ion batteries (LIBs) have been used as the main power source for Electric vehicles (EVs) in recent years. The mechanical behavior of LIBs subject to crush loading is crucial in assessing and improving the impact safety of battery systems and EVs. In this work, a detailed 3D finite element model for a commercial vehicle battery was built, in order to better understand battery failure behavior under various loading conditions. The model included the major components of a prismatic battery jellyroll, i.e., cathodes, anodes, and separators. The models for these components were validated against the corresponding material coupon tests (e.g., tension and compression). Then the components were integrated into the cell level model for simulation of jellyroll loading and damage behavior under three types of compressive indenter loading: (1) Flat-end punch, (2) Hemispherical punch and (3) Round-edge wedge. The comparisons showed reasonable agreement between modeling and experiments.
Journal Article

On the Development of CFD Methodology for Free-Falling Varnish Stream Modeling to Support EV Motor Manufacturing

2023-04-11
2023-01-0158
When manufacturing the stators in EV motors, stator wires are first coated with a layer of resin to provide primary insulation. After winding, impregnating varnish fills all voids within the windings and between the windings and lamination. In addition to electrically insulating the copper wires, another function of the varnish fill is to mechanically secure the copper wires from movement. The process is not complicated in terms of physics. In essence, the mechanics of the varnish flow is the balance of inertia force, viscous force, gravity and surface tension. However, understanding the fluid dynamics of the varnish flow is critical to predicting the quality of the varnish fill, which has a tremendous impact on motor performance. With the advancement of computational fluid dynamics (CFD), the industry can benefit greatly if the varnish trickling process can be tuned, without physical tryouts, to achieve optimal fill.
Technical Paper

Sun Radiation Estimation on Display Screens through Virtual Simulation

2023-04-11
2023-01-0767
Currently the automotive industry has been under extremely important technological changes. Part of these changes are related to the way that users interact with the vehicle and fundamental components are the new digital cluster and screens. These devices have created a disruption in the way information is transmitted to the user, being essential for vehicle operation, including safety. Due to new operating conditions, multiple evaluations need to be performed, one of them is the solar temperature Load to ensure correct operation without compromising user safety. This test is required to identify the thermal performance on the screens mounted on the instrument panel. The performance identification is performed on both sides, analytical and physical. In regards finite element simulation it represents the solar chamber as the main source of heat and being the main mechanism of transmission the radiation.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Experimental Characterization of Aluminum Alloys for the Automotive Industry

2023-02-10
2022-36-0031
Several factors stimulate the development of new materials in the industry. From specific physical-chemical characteristics to strategic market advantages, technology companies seek to diversify their raw materials. In the automotive sector, the current trend of electrification in vehicles and the increase of government and market demand for reducing the emission of greenhouse gases makes lighter materials more and more necessary. As electric vehicles use heavy batteries, the vehicle weight is directly related to its power demand and level of autonomy. The same applies to internal combustion vehicles where the vehicle weight directly impacts fuel consumption and emissions. In this context, there is a lot of research on special alloys and composites to replace traditional materials. Aluminum is a good alternative to steel due to its density which is almost five times smaller while that material still has good mechanical properties and has better impact absorption capability.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

Mobile Safety Application for Pedestrians Utilizing P2V Communication over Bluetooth

2022-03-29
2022-01-0155
Vulnerable Road User (VRU) safety has been an important issue throughout the years as corresponding fatality numbers in traffic have been increasing each year. With the developments in connected vehicle technology, there are new and easier ways of implementing Vehicle to Everything (V2X) communication which can be utilized to provide safety and early warning benefits for VRUs. Mobile phones are one important point of interest with their sensors being increased in quantity and quality and improved in terms of accuracy. Bluetooth and extended Bluetooth technology in mobile phones has enhanced support to carry larger chunks of information to longer distances. The work we discuss in this paper is related to a mobile application that utilizes the mobile phone sensors and Bluetooth communication to implement Personal Safety Message (PSM) broadcast using the SAE J2735 standard to create a Pedestrian to Vehicle (P2V) based safety warning structure.
Technical Paper

Optimization of Gaussian Process Regression Model for Characterization of In-Vehicle Wet Clutch Behavior

2022-03-29
2022-01-0222
The advancement of Machine-learning (ML) methods enables data-driven creation of Reduced Order Models (ROMs) for automotive components and systems. For example, Gaussian Process Regression (GPR) has emerged as a powerful tool in recent years for building a static ROM as an alternative to a conventional parametric model or a multi-dimensional look-up table. GPR provides a mathematical framework for probabilistically representing complex non-linear behavior. Today, GPR is available in various programing tools and commercial CAE packages. However, the application of GPR is system dependent and often requires careful design considerations such as selection of input features and specification of kernel functions. Hence there is a need for GPR design optimization driven by application requirements. For example, a moving window size for training must be tuned to balance performance and computational efficiency for tracking changing system behavior.
Technical Paper

Reduced Order Metamodel Development Framework for NVH

2022-03-29
2022-01-0219
During the design conception of an automobile, typically low-fidelity physics-based simulations are coupled with engineering judgement to define key architectural components and subsystems which limits the capability to identify NVH issues arising from systems interaction. This translates to non-optimal designs because of unexplored design opportunities and therefore, lost business efficiencies. The sparse design information available during the design conception phase limits the development of representative higher fidelity physics-based simulations. To address that restriction on design optimization opportunities, this paper introduces an alternate approach to develop reduced order predictive models using regression techniques by harnessing historical measurement and simulation data. The concept is illustrated using two driveline NVH phenomenon: axle whine and take-off shudder.
Technical Paper

CFD Analysis of a Centrifugal Pump Controlling a Vehicle Coolant Hydraulic System: a Comparison between MRF and Transient Approaches

2022-03-29
2022-01-0780
Centrifugal pumps are widely used in different thermal fluid systems in automobile industries. Computational fluid dynamics (CFD) analysis of such a thermal fluid system depends on the accurate component modeling of the system components. This paper presents CFD analysis of a centrifugal pump with two different approaches: Transient (moving grid) and the steady state - Multiple Reference Frame (MRF) methods using a commercial CFD solver Simerics MP+®. In addition, flow and pressure drop data obtained using CFD simulations of a vehicle coolant hydraulic system was compared to results from rig test data. The Transient method incorporates the real motion of the pump blades geometry and temporal flow solutions are obtained for instantaneous positions of the blade geometry. In MRF approach, the flow governing equations for the stationary zone are solved in the absolute/inertial reference frame, whereas flow in the moving zone is solved in the relative/non-inertial reference frame.
X